If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+9x-45=0
a = 1; b = 9; c = -45;
Δ = b2-4ac
Δ = 92-4·1·(-45)
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{29}}{2*1}=\frac{-9-3\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{29}}{2*1}=\frac{-9+3\sqrt{29}}{2} $
| 10m+8=2(3m+16) | | 9x-11=6x-3-+x | | X-20=5(7x/ | | X-0.6x=2 | | 150+.20x=70+.40x | | 5(3b+5)=38 | | 5(3b+5)=37 | | 36/x=4/7 | | 5(3b+5)=34 | | 5(3b+5)=35 | | 5(3b+5)=60 | | 5(3b+5)=20 | | 5(3b+7)=40 | | 14b-14=7 | | 0.6x+2=x | | 5(3b+5)=40 | | 5(6b+5)=50 | | 8x+4x+6=14 | | 5(b+5)=50 | | m=6;(-4,0) | | 4(10b+8)=50 | | 2x/5-2x/5=4 | | 5(10b+5)=50 | | 4x-3=32x | | 0.6(2x-11)=0.4(8-5x) | | 5(6+3b)=60 | | D=8/7(m-57) | | 2z^2-30z+20=0 | | -12-9+24x+4=43 | | 5(g+8)-5=103 | | -0.2t^2+2.4t-6=0 | | s−60/7=5 |